
dr
af
t

Enforcing OCaml link-time compatibility

using Debian dependencies

Stefano Zacchiroli
<zack@debian.org>

27/01/2009

Abstract

To ensure type-safety, OCaml has strict link-time rules: involved ob-
jects are not allowed to change between (separate) compilation time and
linking time. This does not cope well with the implicit assumption of
future compatibility relied upon in general library packaging in F/OSS
distributions such as Debian.

We discuss how to enforce OCaml link-time type safety using Debian
inter-package relationships (i.e., dependencies). In doing so, we take into
account Debian maintainability problems such as support for binNMUs (bi-
nary non-maintainer uploads) and preservation of human-readable depen-
dency strings.

Latest PDF: http://upsilon.cc/~zack/stuff/ocaml-debian-deps.pdf

Sources (gitweb): http://git.upsilon.cc/cgi-bin/gitweb.cgi?p=papers/ocaml-debian-deps.git

This version ID: f784af83f0b840e6f437782ead7f088412c7107a

1 Introduction

1.1 OCaml’s inter-module assumptions

To ensure type-safety, OCaml does not allow object files subject to linking
to change between their compilation and their linking. In particular, when a
.cmo file is built from a .ml file representing an OCaml module (usually with
something like ocaml -c file.ml) a set of assumptions about all referenced
OCaml modules are stored in the .cmo itself.

Those assumptions take the form of checksums (currently MD5 hash values)
about various parts of the referenced modules. Two kind of assumptions are
currently stored:

Interface assumptions checksums of the (implicit or explicit) .mli1 files of
all modules referenced by the .ml file being compiled

1not exactly of the .mli file itself, but for what concerns this analysis it can be assumed
so: if the .mli file changes, the checksum will change

1

mailto:zack@debian.org
http://upsilon.cc/~zack/stuff/ocaml-debian-deps.pdf
http://git.upsilon.cc/cgi-bin/gitweb.cgi?p=papers/ocaml-debian-deps.git

dr
af
t

Implementation assumptions checksums of all the .ml files which are going
to be inlined as part of the file being compiled

While interface assumptions are recorded for both bytecode and native code
compilation, implementation assumptions are recorded only for native code com-
pilation (since it is the only kind of compilation which performs inlining).

Interface assumptions can be inspected using the ocamlobjinfo tool which
is shipped as part of the legacy OCaml distribution; it is enough to invoke it on
some kind of bytecode OCaml object.

Example 1.1 (Interface assumptions). Consider the following source files:

Listing 1: libFoo.ml

open Printf

l e t hello () = printf "Hello , world!\n"

l e t gotcha () = ()

Listing 2: libBar.ml

l e t hello () =

LibFoo.hello ();

LibFoo.hello ()

Listing 3: myApp.ml

l e t _ = LibBar.hello ()

After building with the bytecode compiler, the object of libBar will store an
interface assumption over libFoo, which can be inspected with ocamlobjinfo:

$ ocamlc -c libFoo.ml

$ ocamlc -c libBar.ml

$ ocamlobjinfo libBar.cmo

File libBar.cmo

Unit name: LibBar

Interfaces imported:

5dbbf45a03b54e6dbfcf39178d0d6341 Printf

f6cef633ea14963b84b79c4095c63dc3 Buffer

8ba3d1faa24d659525c9025f41fd0c57 Pervasives

404 a90bf6e42d9cf101edde25eba92db LibFoo

5cfae708052c692ea39d23ed930fd64d Obj

ffce1e91f2a0e2c49dbaa52bbe7cb364 LibBar

Uses unsafe features: no

$

2

dr
af
t

At link time, the stored assumption over libFoo must match what the linker
discover by itself about libFoo. If this is the case, linking would work properly:

$ ocamlc libFoo.cmo libBar.cmo myApp.ml

$./a.out

Hello , World!

Hello , World!

If that is not the case, linking would fail:

$ echo "let gotcha () = ()" >> libFoo.ml

$ ocamlc -c libFoo.ml

$ ocamlc libFoo.cmo libBar.cmo myApp.ml

Files libBar.cmo and libFoo.cmo

make inconsistent assumptions over interface LibFoo

$

Note that the mismatch can be detected a priori, with respect to linking, using
ocamlobjinfo:

$ ocamlobjinfo libFoo.cmo libBar.cmo |grep LibFoo|tail -n 2

Unit name: LibFoo

50 c3f57970c65dd807a3c48940300a15 LibFoo

404 a90bf6e42d9cf101edde25eba92db LibFoo

$

TODO: mention
that implementation
assumptions are
similar

TODO: mention that
there is no equiv-
alent to ocamlobjinfo

to inspect implemen-
tation assumption in
the legacy distribu-
tion, but that there
is an external tool
(where is it?)

1.2 Naive inter-package dependencies

Now, let’s say that libFoo, libBar, and myApp of Example 1.1 are packaged as
separate Debian packages, respectively libfoo-ocaml-dev, libbar-ocaml-dev,
and my-app. Consider the natural, yet simplified, dependency scheme:2

Package: my -app

Version: 1

Build-Depends: libbar -ocaml -dev (>= 1)

Package: libfoo -ocaml -dev

Version: 1

Package: libbar -ocaml -dev

Version: 1

Depends: libfoo -ocaml -dev (>= 1)

Such a scheme it is not enough to ensure the following desirable property is
fulfilled by all the involved packages:

2to simplify, we report build dependencies together with dependencies in the same stanza,
while in debian/control they must belong to different stanzas

3

dr
af
t

Property 1 (OCaml packages dependency soundness). A set of packages p1, . . . , pn

has sound OCaml dependencies iff the satisfaction of their inter-package depen-
dencies implies that no link-time failures due to inconsistent assumptions can
arise among OCaml objects shipped by p1, . . . , pn.

Dependency satisfaction is defined as usual accordingly to the Debian pol-
icy [2].

Trivially, the property cannot be fulfilled because future versions of, say,
libfoo-ocaml-dev can defeat the assumptions under which libbar-ocaml-dev
has been built. This, in turn, will induce a link-time failure when a rebuild of
my-app will be attempted, unless libbar-ocaml-dev will be rebuilt against the
newer libfoo-ocaml-dev.

Using more strict version predicates, such as:

Package: libbar -ocaml -dev

Version: 1

Depends: libfoo -ocaml -dev (>= 1), libfoo -ocaml -dev (<< 2)

will not work either, because there is always a version number between any
two version numbers, and that version can be the one defeating the OCaml
assumptions of reverse-dependent packages.

To conclude, two observations are in order:

1. The problem arises because OCaml assumptions are not reflected in the
dependency language.

2. An analogy with the packaging of C libraries stands: each package shipping
(linkable) OCaml objects define its own ABI, that ABI can be defined as
follows:

Definition 1.1 (OCaml package ABI). The OCaml ABI of a package
shipping linkable OCaml objects is a function abi : M → C, where M
is the set of valid OCaml module identifiers and C is the set of (MD5)
module checksums.

TODO: this defini-
tion does not account
for the distinction
between interface
and implementation
assumptions, refine
it!

Each change to the ABI function, even point-wise, triggers a link-time
failure, whereas for C libraries point-wise (i.e., symbol) changes only af-
fects users of that symbol. In particular, this enables C libraries to ship
backward-compatible changes as ABI additions.

Practically, this means that OCaml library ABIs change very frequently,
possibly at each library release. This makes unfeasible using the same
solution adopted by C library packagers, namely reflect ABI versions in
package names.

1.3 Debian shared library information files

A related infrastructure piece, which interacts with what we are aiming for, is
the shlibs registry, used by some cooperative debhelpers [1] to automatically
infer package dependencies starting from shared library dependencies.

4

dr
af
t

The typical inter-package dependencies which can be inferred using shlibs
are those from packages shipping C objects linked against shared libraries (typ-
ically dynamically linked executables or libraries) to the packages actually ship-
ping the shared libraries.

A brief description of how the shlibs mechanism works follows; more details
can be found in the following manual pages: deb-shlibs(5), dh shlibdeps(1),
dh makeshlibs(1).

Each package shipping a C shared library (i.e., one or more .so files) should
ship a shlibs file which gets installed by dpkg as /var/lib/dpkg/info/PKGNAME.shlibs.

shlibs files are line-oriented, one record per line; considered all together
they form a shlibs registry. Each record associates together 3 fields: a library
name, a package name, and a version predicate on that package.

The intended usage of such a tuple is, intuitively, that every package con-
taining C objects referencing a library appearing in the first field must have a
dependency on the package reported in the second field, with version require-
ment according to the third field.

Example 1.2 (shlibs file). Here is the content of shlibs shipped by the
libglib2.0-0:34

Listing 4: /var/lib/dpkg/info/libglib2.0-0.shlibs
libglib -2.0 0 libglib2 .0-0 (>= 2.16.0)

libgthread -2.0 0 libglib2 .0-0 (>= 2.16.0)

libgmodule -2.0 0 libglib2 .0-0 (>= 2.16.0)

libgio -2.0 0 libglib2 .0-0 (>= 2.16.0)

libgobject -2.0 0 libglib2 .0-0 (>= 2.16.0)

Hence, if for instance a package ships a library or executable dynamically
linked against libglib-2.0, that package must have among its dependencies
something like: Depends: libglib2.0-0 (>= 2.16.0), according to the first
line of libglib2.0-0 shlibs file.

Practically, shlibs files are created automatically by the debhelper dh makeshlibs
which inspects installed .so files and can be driven with specific information
about version requirements. Symmetrically, inferred dependencies are added by
the debhelper dh shlibdeps which looks up all shared library dependencies of
shipped objects (as can be obtained using ldd) against the shlibs registry and
collect the relevant dependency snippets. The final step of filling the Depends
field is delegated to the substvars mechanism.5

3Note: some irrelevant entries of that file have been omitted as irrelevant, in particular all
entries related to udeb management have been omitted

4note that shlibs files are managed directly by dpkg and are not shipped as the content
of .deb packages. Hence, trying to lookup shlibs files using commands such as dpkg -L or
dpkg -S apt-file search will not work as expected

5See the deb-substvars(5) manual page.

5

http://man.cx/deb-shlibs(5)
http://man.cx/dh_shlibdeps(1)
http://man.cx/dh_makeshlibs(1)
http://man.cx/deb-substvars(5)

dr
af
t

1.4 binNMUs

Nothing to see here yet, in the meantime have a look at http://wiki.debian.
org/binNMU TODO: fill this sec-

tion

2 Dependency management desiderata

In this section we state the good properties we are looking for, in dependency
management mechanism for OCaml libraries and packages.

Dependency soundness First of all we want Property 1 (dependency sound-
ness) to be satisfied: inter-package dependencies should be enough to ensure
link-time compatibility between OCaml objects. For Debian users this would
mean that temporary link-time incompatibilities6 can be detected by package
managers, avoiding the annoying routine of “upgrade first” and “discover then”
that the OCaml toolchain has been broken.

Dependency inference Then, we want dependencies to OCaml libraries (or,
more generally, to whatever package shipping OCaml objects) to be automati-
cally inferred by (possibly OCaml-specific) packaging tools. Ideally, using helper
external tools we want our debian/controls to be, with respect to dependen-
cies, something like:

Package: my -app

Version: 1

Build-Depends: libbar -ocaml -dev (>= 1)

Depends: ..., ${ocaml:Depends}, ...

Package: libbar -ocaml -dev

Version: 1

Build-Depends: libfoo -ocaml -dev (>= 1)

Depends: ..., ${ocaml:Depends}, ...

where ${ocaml:Depends} is a usual substitution variable automatically filled
with the (possibly versioned) names of Debian packages shipping the needed
OCaml objects for the package at hand.

binNMU-safety We want OCaml-related packages to be binNMU-safe. That not
only means that inferred dependencies should not be tied to source package
version, but also that we cannot rely on source uploads. As we will have no
guarantee of source uploads, architectures relying on changes to be incorporated
in source packages are not suitable for the task. All OCaml-specific dependency
information should be recomputed during build, depending only on the (binary)
packages installed as build dependencies.

6Such incompatibilities can appear from time to time, most notably in the unstable or
experimental archives, and during library or compiler transitions.

6

http://wiki.debian.org/binNMU
http://wiki.debian.org/binNMU

dr
af
t

Note that binNMU-safety is not only for the sake of doing things “right”,
but also a real need to reduce maintenance burden of OCaml packages. We
are floating towards about 100 OCaml related source packages. Transitioning
them by the means of source upload would be unnecessary painful and time
consuming, binNMUs help in keeping the task manageable.

2.1 State of the art

How do the current practices in maintaining OCaml packages score with respect
to the above desiderata?

2.1.1 Almost “by hand” OCaml dependencies

Currently, the OCaml packaging guidelines [3] prescribe to manually fill inter-
package dependencies. The suggested dependency scheme rely on >= predicates
between libraries, but are by no means required to be bound to the latest avail-
able version of the library in the archive or something such.

Here is how the current scheme scores with respect to our desiderata:

7 dep. soundness: dependencies do not guarantee link-time compatibility,
they are too coarse and do not encode OCaml assumptions

7 dep. inference: dependencies are filled by hand

3 binNMU-safety: packages are binNMU-safe, in the sense that dependencies
are generally stable and do not change upon (binary) rebuild.

The only exceptions to that stability are the dependencies on the compiler
itself and related tools; those exceptions are accounted for by filling them
via compiler-specific substitution variables.

2.1.2 dh ocaml & ocaml-md5sums

Back in 2004, dh ocaml has been developed to improve over the aforementioned
“by hand” dependency management. In spirit, dh ocaml is very similar to the
shlibs mechanism (see Section 1.3): it is based on an underlying registry (the
“OCaml md5sums registry”7) handled by ocaml-md5sums which plays the role
of the .shlibs files.

The registry is composed by .md5sums files shipped together with pack-
ages which contain OCaml objects. In this case, there is no specific man-
agement required from the package manager, the registry files are ordinary
files shipped as part of the package content. Those files are stored under
/var/lib/ocaml/md5sums/. To speed up lookup, a comprehensive registry con-
taining all the entries of all shipped files is kept as /var/lib/ocaml/md5sums/MD5SUMS.

7. . . which should be better renamed to something along the lines of “OCaml module
assumption registry”

7

dr
af
t

It can be considered as a cat-together of all registry files, and can be updated
by invoking ocaml-md5sums update.8

Each .md5sums file in general contributes several entries to the md5sums reg-
istry. Each entry is a tuple 〈md5sum, module, devel dep, runtime dep, version〉.
The various entries are, respectively, the checksum corresponding to a (interface)
OCaml assumption, the module name matching the assumption, and depen-
dency information describing the Debian package which is providing a module
matching that assumption. We omit the discussion of why such dependency in- TODO: expand this

part instead of omit-
ting itformation are split in three parts (devel-time dependency, runtime-dependency,

and version).
Having such information for all installed packages which ship OCaml objects,

it becomes possible to lookup the registry to automatically infer dependencies
over those packages. The work-flow to infer dependencies for a package p which
is being built will be as simple as:

1. build p;

2. identify the OCaml objects that p ships (in case it is a library) or the
OCaml executables that p ships (in case it is a binary program);

3. query them for their assumptions over all OCaml objects which are not
shipped as part of p;

4. lookup each such assumption into the md5sums registry and emit the
appropriate dependency snippet.

This work-flow is actually implemented by dh ocaml, which is a debhelper-
like tool that does all of the above and in addition also provides some convenience
substitution variables.

Now, for the score chart of dh ocaml:

7 dep. soundness: dh ocaml is orthogonal to dependency soundness. In
fact, in the current implementation, dh ocaml just implements the same
dependency scheme which is currently used “by hand”. Given that that
scheme does not guarantee dependency soundness, dh ocaml cannot im-
prove upon that.

3 dep. inference: this is the true improvement offered by dh ocaml, and
actually its main design goal.

3 binNMU-safety: as per dependency soundness, dh ocaml is orthogonal to
this and preserve the (this time good) property of the underlying depen-
dency scheme.

8Following a common packaging pattern, packages shipping .md5sums files are require to
update the registry from theirs postinst and postrm maintainer scripts.

8

dr
af
t

3 Towards better dependency management

What we are missing for a foreseeable satisfiable solution to OCaml dependency
management is, in essence, dependency soundness (Property 1).

At DebConf7 a discussion have been held on the topic between members of
the OCaml packaging task force and the release team. We report in this section
some of the considered solutions (together with why they have been ditched)
and the final, proposed solution.

OCaml assumptions as virtual packages This first solution attempt mim-
ics the dependency scheme being used by RedHat to package OCaml-related
software. The idea is to add a Provides entry (i.e., a virtual package) for each
assumption provided by objects shipped by a given package. In a sense, this so-
lution recasts the content of md5sums registry entries into package descriptions
as virtual packages. TODO: add an

example of OCaml-
related package,
together with all
its provided virtual
packages

This solution is not acceptable in Debian for various reasons:

• It will bloat APT package lists such as Packages file.

• It provides virtual package names which are not only entirely meaningless
for humans, but also hard to grasp for people which sooner or later will
have to deal with them, where “read” can mean something as simple
as “reading them” (e.g.: users facing dependency problems reported by
package managers, release managers following a transition to testing).

TODO: following so-
lution names suck big
times, look for some-
thing better . . .ABI evolution tracking To counter both problems of the previous solution,

it would be enough to have a mapping from OCaml package ABIs (in the sense
of Definition 1.1) to integers.

Let’s imagine we can associate the number 1 to the ABI corresponding to the
current version of package libpcre-ocaml-dev in the unstable archive. Then
we can form a meaningful virtual package name such as libpcre-ocaml-dev-1,
make the real package provide it and reverse-dependent package rely on it. As
long as the ABI number, and hence the virtual package name, can be computed
during build of both the package itself and of reverse-dependent packages, ev-
erything works as we need.

Unfortunately this solution makes unachievable the goal of binNMU-safety.
Indeed to ensure that ABI numbers will not clash in the future we will have to
either maintain by hand a mapping between the ABI function (which roughly
correspond to md5sums registry entries) and version numbers,9or ensure auto-
matically a monotonic increase of ABI number. Both options defeat binNMU-
safety; in particular the latter will need to preserve somewhere a history of past
ABI numbers which cannot be saved anywhere upon binNMUs.

9Note: such a solution would resemble the recently added support for symbol management
to the shlibs mechanism (see the manual page deb-symbols(5)). In practice, with that
technique, ABI changes are detecting while rebuilding packages and trigger build failures.
While that is acceptable for C libraries, where breakages seldom happens, it is not for OCaml
libraries, as it will potentially inhibit transitions via binNMU

9

http://debconf7.debconf.org/
http://man.cx/deb-symbols(5)

dr
af
t

Approximated ABI Building upon previous reasoning, we can achieve a
mapping between ABI functions and ABI identifiers by taking a checksum of
the md5sums registry entry of a package shipping OCaml objects.

If the checksum is short enough, we can produce manageable/readable vir-
tual package names (e.g., libpcre-ocaml-dev-1234) still retaining a low prob-
ability of clashes. Rough consensus in the DebConf7 discussion has emerged on
choosing as ABI identifiers string of length 4, composed by only digits, as in the
previous example.

This dependency management scheme will account for:

3 dep. soundness, of course up to clashes. The probability of clashes will
be of the order of 1/10’000, which is way better than the current situation
anyhow

3 dep. inference by simply piggybacking the approximated ABI mecha-
nism on top of the current implementation of dh ocaml / ocaml-md5sums
(and of course by starting using them on all packages shipping OCaml
objects!)

3 binNMU-safety no state is required for computing approximated ABI val-
ues, they depend only on registry entries of build dependencies and on
shipped OCaml objects

Practically, the implementation of this mechanism can be achieved on top
of the readily available dh ocaml and ocaml-md5sums.

4 Conclusion
TODO: add paper
summary here

4.1 Outstanding issues

Incompleteness of assumption detection currently, the only tool available
to inspect OCaml assumptions is ocamlobjinfo. It is limited in which it
only works for bytecode objects and (as a consequence) only reports about
interface assumptions, neglecting implementation assumptions.

References

[1] Joey Hess. debhelper debian package: helper programs for debian/rules.
http://packages.debian.org/sid/debhelper/, 2009. Version 7.0.15.

[2] Ian Jackson and Christian Schwarz. Debian policy manual. http://www.
debian.org/doc/debian-policy/, 2008.

[3] Sylvain Le Gall, Sven Luther, Samuel Mimram, Ralf Treinen, and Stefano
Zacchiroli. Debian OCaml packaging policy. http://pkg-ocaml-maint.
alioth.debian.org/ocaml_packaging_policy.html/, 2009.

10

http://packages.debian.org/sid/debhelper/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://pkg-ocaml-maint.alioth.debian.org/ocaml_packaging_policy.html/
http://pkg-ocaml-maint.alioth.debian.org/ocaml_packaging_policy.html/

dr
af
t

A Roadmap
TODO: write a
roadmap to achieve
full implementation
of the proposed
solution

11

	Introduction
	OCaml's inter-module assumptions
	Naive inter-package dependencies
	Debian shared library information files
	binNMUs

	Dependency management desiderata
	State of the art
	Almost ``by hand'' OCaml dependencies
	dh_ocaml & ocaml-md5sums

	Towards better dependency management
	Conclusion
	Outstanding issues

	Roadmap

