Differences between revisions 24 and 25
Revision 24 as of 2017-12-10 23:13:56
Size: 18764
Editor: ?KarstenMerker
Comment: Provide information about qemu support for RISC-V and describe how to set up binfmt-misc.
Revision 25 as of 2017-12-10 23:18:02
Size: 18762
Editor: ?KarstenMerker
Comment: Typo fix.
Deletions are marked like this. Additions are marked like this.
Line 235: Line 235:
$ $ uname -m $ uname -m

This page contains details about the port of Debian for the RISC-V architecture (riscv64).

In a nutshell

What is RISC-V?

From the Wikipedia entry for RISC-V:

RISC-V (pronounced "risk-five") is an open source instruction set architecture (ISA) based on established reduced instruction set computing (RISC) principles.

In contrast to most ISAs, RISC-V is freely available for all types of use, permitting anyone to design, manufacture and sell RISC-V chips and software. While not the first open ISA, it is significant because it is designed to be useful in modern computerized devices such as warehouse-scale cloud computers, high-end mobile phones and the smallest embedded systems. Such uses demand that the designers consider both performance and power efficiency. The instruction set also has a substantial body of supporting software, which fixes the usual weakness of new instruction sets.

The project was originated in 2010 by researchers in the Computer Science Division at UC Berkeley, but many contributors are volunteers and industry workers that are unaffiliated with the university.

There are different versions of the instruction set for 32, 64 and 128 bits; operating as little-endian by default.

What is a Debian port?

In short, a port in Debian terminology means to provide the software normally available in the Debian archive (over 20,000 source packages) ready to install and run on systems based in a given computer architecture with the Linux kernel, or kernel-architecture combinations, with other kernels including GNU Mach (from GNU/Hurd) and kFreeBSD (from GNU/kFreeBSD).

See https://www.debian.org/ports/ and DebianPorts for more information.

What are the goals of this project in particular?

In this project the goal is to have Debian ready to install and run in systems implementing variants of the RISC-V ISA:

  • Software-wise, this port will target the Linux kernel

  • Hardware-wise, the port will target the 64-bit variant, little-endian

The ISA variant is the "default flavour" recommended by the designers, and the one that seems to attract more interest for planned implementations that might become available in the next few years (development boards, possible consumer hardware or servers).

While 32-bit and 128-bit implementations are possible, there are problems with this:

  • In the context of RISC-V design, they have not been explored as deeply, and tools and resources (e.g. simulators, research cores) as not as well studied and adapted;
  • For general purpose computers, the focus shifted to 64-bit for many years already, and there isn't a lot of interest in 32-bit architectures except for specific purposes;
  • 32-bit ports in Debian already struggle to compile some large packages of the archive in the last few months/years, a problem that will become worse with time;
  • and 128 is simply not realistic at this time.

Upstream project / Architecture / Hardware

Upstream project / Community

Architecture details

Hardware

FPGA implementations

There are freely available softcores which can be synthesized to an FPGA, such as Rocket, a 64-bit RISC-V in-order core (optionally including an MMU and an IEEE 754-2008-compliant FPU).

ASIC implementations, i.e. "real" CPU chips

There is currently no Linux-capable RISC-V silicon available for purchase by the general public, but this will probably change in the future. As of 2017-10, possible candidates include:

  • The lowRISC project, which has described itself as follows:

"lowRISC is a not-for-profit organisation working closely with the University of Cambridge and the open-source community.
lowRISC is creating a fully open-sourced, Linux-capable, RISC-V-based SoC, that can be used either directly or as the basis for a custom design. [...]
Our open-source SoC (System-on-a-Chip) designs will be based on the 64-bit RISC-V instruction set architecture. Volume silicon manufacture is planned as is a low-cost development board. [...]"

  • A commercial offering from SiFive. According to an article on hackaday.com, SiFive has on 2017-10-04 announced a Linux-capable 64Bit RISC-V quad-core SoC to be available on a development board "in early 2018".

Toolchain upstreaming status

  • binutils: upstreamed (2.28 is the first release with RISC-V support)
  • gcc: upstreamed (7.1 is the first release with RISC-V support)
  • glibc: upstreaming in progress, targets the 2.27 release
  • linux kernel: upstreaming in progress (the architecture core code has been accepted upstream and will be part of the kernel 4.15 release; for full system support additional driver code is necessary which is planned to go into kernel 4.16)
  • gdb: not upstreamed yet
  • qemu: not upstreamed yet (for information about the current state of qemu support please refer to the qemu section below)

Debian port information

Hardware baseline and ABI choice

The Debian port uses RV64GC as the hardware baseline and the lp64d ABI (the default ABI for RV64G systems).

Making the C extension a part of the default hardware baseline for general-purpose binary Linux distributions has been agreed upon between Fedora porters, Debian porters and members of the RISC-V foundation. According to the chairman of the board of the RISC-V foundation, the foundation will provide "a profile for standard RISC-V Unix platforms that will include C as mandatory".

Status Log

2017-11-15

The pull request for the kernel has been accepted and the architecture-core patchset has been merged into the upstream kernel repository.

2017-11-13

A pull request for inclusion of the RISC-V architecture-core patchset into kernel 4.15 has been sent to Linus Torvalds.

2017-10-31

The RISC-V Linux kernel upstreaming patchset has been included into linux-next.

2017-10-05

Version 9 of the kernel upstreaming patchset has been posted to LKML on 2017-09-26. As planned after v8, it has been split into an architecture-core and a driver patchset. The RISC-V architecture maintainer has a kernel.org account now, which is a prerequisite for getting the patches into linux-next, but the actual inclusion into linux-next is still pending as the linux-next maintainer has announced that updating the linux-next tree will be on hold during the whole of October 2017.

2017-09-17

The kernel upstreaming patchset hasn't made it in into the kernel 4.14 merge window, so it now targets kernel 4.15. Version 8 of the patchset has been posted to LKML recently (note: the archive of the corresponding thread on lkml.org appears to be incomplete). While the patchset has received an overall positive review from kernel developer Arnd Bergmann, he and two other kernel developers have pointed out a few minor points that require some further discussion and probably some restructuring of the timer code. The plan for version 9 of the patchset is to address those issues and split the patchset into an architecture-core and a driver patchset. The architecture-core patchset can then hopefully be soon included in linux-next as a preparation for getting it merged during the kernel 4.15 merge window.

2017-07-30
The RISC-V upstream kernel patchset has gone through a number of review cycles, but hasn't made it into the kernel 4.13 merge window. Judging from the review comments, chances for an inclusion into kernel 4.14 look quite good, though. There are a number of open questions concering the RISC-V memory model, whose formal specification is still work-in-progress. The corresponding RISC-V foundation working group has announced that the formal memory model specification should be published in the near future (before end of 2017).
The upstream glibc maintainers have made clear that they require the kernel port to be accepted (at least as part of linux-next, preferably as part of a Linux release candidate) before the glibc support can be accepted for upstream inclusion. As a result, the upcoming glibc 2.26 release won't have RISC-V support. The earliest upstream glibc version that could have RISC-V support will therefore be 2.27, which is planned to be released around 02/2018.
2017-06-14

The first version of an upstreaming patchset for glibc has been posted to the upstream glibc development list (libc-alpha).

2017-05-22

The first version of an upstreaming patchset for the Linux kernel has been posted to the upstream Linux kernel mailinglist.

2017-05-02

Upstream GCC 7.1 has been released with RISC-V support.

2017-04-22

Unofficial repository published (WIP, incomplete and probably not working for you at the moment): http://riscv.mit.edu/

More information about details and story in https://people.debian.org/~mafm/posts/2017/20170422_debian-gnulinux-port-for-risc-v-64-bit-riscv64/

2017-03-04
Upstream binutils 2.28 have been released with RISC-V support on 2017-03-02.
2017-02-06

The GCC support for RISC-V has been committed to the upstream GCC repository and will be part of the GCC 7 release. Commit list: 1 2 3 4 5 6

2017-01-18
The binutils support for RISC-V has been accepted upstream in November/December 2016 and will be part of binutils 2.28 (expected to be released in Q1/2017).

The GCC support for RISC-V has been accepted for upstream inclusion by the GCC Steering Committee but is still pending the final stages of the technical review as there have been a number of review comments that need to be addressed in a new version of the upstreaming patchset. There is reason for hoping that the RISC-V support could make it into the GCC 7 release, but this depends on how fast the review process can be finished.

2016-02-19
The preparations for this port started in private a while ago, but nothing has been made public so far and nothing useful yet for users and developers.

The main reason is the lack of official support for this architecture in fundamental pieces of the toolchain (binutils, gcc, glibc), the main OS kernel (linux) or even other software that might help with the port (e.g. qemu). All of the mentioned pieces have support in progress and are considered to submit for upstreaming, but nothing definitive has happened at the moment.

In particular, a recent message informed about some upcoming changes to the supervisor specifications (the ABI), which will affect binutils at least. Starting a Debian port without the ISA being settled is not very good, since the effort will need to be restarted from scratch.

It is expected that this situation will change soon (within few months) and that progress on this port can be resumed.

Credits

Porters:

Hardware Sponsors:

  • Bytemark provides hardware to help to kick-start this port. Bytemark is a long-time partner of Debian

  • Also using personal computers and regular Debian infrastructure

History

2016-02-19
Created page of the port in the wiki

APT sources.list

Unofficial repository (WIP, incomplete and probably not working for you at the moment): http://riscv.mit.edu/

See https://people.debian.org/~mafm/posts/2017/20170422_debian-gnulinux-port-for-risc-v-64-bit-riscv64/ for more details.

To use it, in /etc/apt/sources.list:

  deb [ arch=riscv64 signed-by=/usr/share/keyrings/debian-keyring.gpg ] http://riscv.mit.edu/debian unstable main
  deb-src [ signed-by=/usr/share/keyrings/debian-keyring.gpg ] http://riscv.mit.edu/debian unstable main

The repository is signed with the key from Manuel as Debian Developer, contained in the file /usr/share/keyrings/debian-keyring.gpg, which is part of the package debian-keyring (available from Debian and derivatives).

Not in Debian infrastructure at the moment, but when it is, follow instructions in: http://www.ports.debian.org/archive . Example:

 deb http://ftp.ports.debian.org/debian-ports/ sid main
 deb http://ftp.ports.debian.org/debian-ports/ unreleased main
 deb-src http://ftp.ports.debian.org/debian-ports/ sid main

Mirrors (use them if possible, they may be closer to you): http://www.ports.debian.org/mirrors

buildd (build-daemon) information

Porterboxes

Currently there are no porterboxes available. See the qemu section to install locally, if available.

Qemu

Qemu support for RISC-V isn't upstream yet, but there is a fork with RISC-V support at https://github.com/riscv/riscv-qemu/. User-mode emulation works; full-system emulation is work-in-progress. In 2017-12 several major enhancements have been implemented, the most important being support for version 1.10 of the RISC-V privileged ISA specification, which allows running upstream kernels in qemu. The first supported system-emulation target is a spike-compatible board, which unfortunately doesn't support any block devices besides the initrd and doesn't have any networking support. A "virt" target that supports virtio block and network devices is being worked on.

The Linux kernel has a very useful "binfmt-misc" feature that allows to transparently run foreign-architecture user-mode binaries with qemu. Debian supports this out-of-the-box for the release architectures with the qemu-user-static package; riscv64-support can be added as follows:

Build a static qemu binary with support for user-mode emulation:

$ git clone https://github.com/riscv/riscv-qemu/
$ cd riscv-qemu
$ ./configure --static --disable-system --target-list=riscv64-linux-user
$ make
$ sudo cp riscv64-linux-user/qemu-riscv64 /usr/bin/qemu-riscv64-static

Create a binfmt-support config file and register it:

$ cat >/tmp/qemu-riscv64 <<EOF
package qemu-user-static 
type magic
offset 0
magic \x7f\x45\x4c\x46\x02\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\xf3\x00
mask \xff\xff\xff\xff\xff\xff\xff\x00\xff\xff\xff\xff\xff\xff\xff\xff\xfe\xff\xff\xff
interpreter /usr/bin/qemu-riscv64-static
EOF
$ sudo update-binfmts --import /tmp/qemu-riscv64

With this it is now possibe to transparantly run user-mode riscv64 binaries on another architecture:

$ uname -m
x86_64
$ file busybox 
busybox: ELF 64-bit LSB executable, UCB RISC-V, version 1 (SYSV), statically linked, for GNU/Linux 3.0.0, stripped
$ ./busybox touch foo
$ ls foo
foo

This also works in chroots if the /usr/bin/qemu-riscv64-static binary is available inside the chroot.

For the use of qemu in the bootstrap process of other ports, please see

Cross compilation

When support for RISC-V targets are added to gcc upstream and enabled in the relevant packages in Debian, they can be installed directly from the main Debian repositories:

  # apt install gcc-riscv64-linux-gnu g++-riscv64-linux-gnu

Resources

Mailing list

IRC

  • irc.oftc.net / irc.debian.org (https://www.oftc.net/)

    • #debian-riscv
    • #debian-bootstrap (general port bootstrap efforts)

    • #lowRISC (not exactly Debian specific, but many interested people within Debian participate)

Bugs (BTS)

To: submit@bugs.debian.org
Subject: foo: FTBFS on riscv64

Package: foo
Version: 1.2.3-4
X-Debbugs-CC: debian-riscv@lists.debian.org
User: debian-riscv@lists.debian.org
Usertags: riscv64

The version of the package currently FBTFS on the riscv64 port:

  URL_of_the_log

or

To: control@bugs.debian.org
Subject: riscv64 usertags for #BUGNUMBER
CC: debian-riscv@lists.debian.org

user debian-riscv@lists.debian.org
usertag BUGNUMBER + riscv64
stop

or

To: BUGNUMBER@bugs.debian.org
Subject: Setting riscv64 usertags
CC: debian-riscv@lists.debian.org

Control: user debian-riscv@lists.debian.org
Control: usertag -1 + riscv64


CategoryPorts